Clinical trials reveal the efficacy of hydroxychloroquine in treating COVID-19

In the past few days, the name of a compound used for decades in the treatment of malaria, chloroquine, has been on the front pages of newspapers and posts shared online. In the origin of everything is a study published on March 18th in the scientific journal Cell Discovery, of the Nature group. This article describes experiments carried out on monkey cells cultured in vitro, in which researchers at the Institute of Virology of Wuhan observed that hydroxychloroquine, a less toxic form of chloroquine, reduces infection by the SARS-CoV-2 coronavirus, possibly by preventing it from entering the cells and/or its genome reaching the cell nucleus and therefore being copied to generate new viruses.

It is known that chloroquine and hydroxychloroquine increase the pH of intracellular vesicles such as lysosomes, which function as the digestive system of the cells, by degrading various types of molecules and recycling their components. With a very efficient degradative capacity, lysosomes are also used by the cell to eliminate bacteria and parasites and avoid infectious diseases. Therefore, lysosomes are essential components for our innate immunity.

Since hydroxychloroquine is already used to treat lupus and rheumatoid arthritis, a few days later clinical trials began on patients with COVID-19. Meanwhile, the controversy between Donald Trump and the Director of the National Institute of Allergy and Infectious Diseases of the USA - Anthony Fauci erupted in the news. After the US President stated that "There’s tremendous promise based on the results and other tests. There’s tremendous promise.", Fauci clarified that " It was not done in a controlled clinical trial, so you really can’t make any definitive statement about it.".

The first results of the clinical trials began to emerge, albeit from studies with few patients. Indeed, they show some effectiveness of hydroxychloroquine towards COVID-19, but the clinical trials have to be done with larger patient samples. It should also be emphasized that although this drug is apparently effective in the treatment of COVID-19, the mechanism(s) of action are not known in the case of this infection.

At the Chronic Diseases Research Center (CEDOC), from NOVA Medical School (NMS I FCM), several researchers study the functions of the lysosome, using chloroquine, among other compounds. The role of lysosomal dysfunction in several chronic diseases is also studied. The European LYSOCIL project ( is a collaborative project led by CEDOC-NMS I FCM, which focuses on the study of rare diseases that affect the lysosome. This cell compartment still has poorly understood functions, in addition to its role in the degradation of different molecules. The LYSOCIL project aims, to provide scientific training to CEDOC-NMS I FCM researchers, through collaborations with recognized institutes in this area, such as the Telethon Institute of Genetics and Medicine (TIGEM), in Italy.

It is therefore essential to continue with the research, so that one can understand how chloroquine and other drugs work and so that, in a time of global emergency like this, they can represent a hope in new therapies. In addition, there is an urgent need to discover new drugs and new therapeutic targets that increase the arsenal we have available against infections and chronic diseases.

At times like this, the importance of scientific knowledge and fundamental biomedical research becomes evident. Furthermore, it becomes clear that research should have a higher priority on the agenda of policy makers and that the funding dedicated to it should be boosted.


The LYSOCIL project is now on video! Please access our video and share it! Help us spread our project worldwide!

English version with English subtitles.

LYSOCIL Project's public deliverables on the project communication

Under the scope of WP7 “Dissemination and Communication”, the LYSOCIL project has produced a set of reports that explain the dissemination and communication activities being organized to raise awareness of the project’s activities and outputs among the key target audiences.

WP7 supports the project’s implementation with the main objective of communicating and disseminating information about RDs and in particular lysosomal diseases and ciliopathies, to ensure the highest possible impact across and beyond the consortium.

You can download the following deliverables:

D7.2 - Project website launch and Visual Identity Guide: explains the creation of the LYSOCIL logo and website design

D7.3 – Communication and promotional materials I: explains the promotional materials and the communication activities

D7.6 - e-LYSOCIL RDs Research HUB launch: explains the website general structure

Rare Disease